

Management of discordant *Mycobacterium tuberculosis* resistance tests

Marc Mendelson

Division of Infectious Diseases & HIV Medicine University of Cape Town

SA HIV Clinicians Society Conference • 16th April 2016 • Sandton • TB Discordance

Credit, where credit's due

Discordance

- "A state of non-harmony or non-agreement"
- Non-agreement between
 - Different genotypic tests
 - Genotypic and phenotypic tests
 - 1 or more of genotypic and/or phenotypic tests and clinical response to treatment

Heteroresistance

- Sensitive and resistant *M. tuberculosis* in a single clinical sample
- Resistance mutations arise from a single clone
- Spontaneous or driven by antibiotic selection pressure
- Picked up by LPA, molecular phenotyping (MIRU-VNTR) or by genome sequencing
- Assaying single samples doesn't allow us to define full extent of heteroresistance, nor the significance of various mutations

Dynamic Population Changes in *Mycobacterium tuberculosis* During Acquisition and Fixation of Drug Resistance in Patients

Gang Sun,^{1,a} Tao Luo,^{1,a} Chongguang Yang,¹ Xinran Dong,² Jing Li,³ Yongqiang Zhu,⁴ Huajun Zheng,⁴ Weidong Tian,² Shengyue Wang,⁴ Clifton E. BarryIII,⁵ Jian Mei,³ and Qian Gao¹

Mixed Populations

- Presence of drug-sensitive and drug-resistant populations of different clonality in the same person
- Driven by high rates of infection & re-infection in TB-endemic populations

Van Rie et al. Am J Resp Crit Care med 2005;172: 636-42 Shamputa et al. Respir Res 2006; 7:99

Identification of multiple *M. tuberculosis* infections in sputum samples

AND AFRICA

186 patients

Male 126 and Female 60

61 patients infected with Beijing strains

Male 40 and Female 21

Single infection

26 (43%) patients infected with a Beijing strain only

Male 19 and Female 7

Mixed infection

35 (57%) patients infected with a Beijing strain and a non-Beijing strain.

Male 21 and Female 14

Warren, R. M., T. C. Victor, E. M. Streicher, M. Richardson, N. Beyers, N. C. van Pittius, and P. D. van Helden. 2004. Patients with active tuberculosis often have different strains in the same sputum specimen. *Am.J.Respir.Crit Care Med.* 169:610-614.

Slide courtesy of Paul van Helden

Rifampicin action & resistance

- Inhibits DNA synthesis by binding to RNA polymerase
- RNA polymerase is encoded by the *rpo*B gene
- 95% of rifampicin resistance due to SNP in the 81bp rifampicin resistance determining region (RRDR)
 - alters RNA pol structure, inhibiting rifampicin binding
- RRDR is the target for Xpert MTB/RIF and GenoType
 MTBDR*plus* line probe assay

Rifampicin Resistance Determining Region (RRDR)

Xpert MTB/RIF Molecular Beacons

Lawn & Nicol. Future Microbiol. 2011 Sep; 6(9): 1067–1082.

Rifampicin Sensitive Xpert

All 5 probes & B. globigii control amplify (fluoresce)

Lawn & Nicol. Future Microbiol. 2011 Sep; 6(9): 1067–1082.

Rifampicin Resistant Xpert

Lawn & Nicol. Future Microbiol. 2011 Sep; 6(9): 1067–1082.

Trouble shooting Xpert MTB/RIF: False-positive rifampicin resistance

- Procedural
 - preparation of specimen
 - delay in running the assay
 - air bubbles
- Very low Mycobacterial load
- Delay to reach cycle threshold (C_T) rather than dropout

− C _T delay <4	sensitive
– C _T delay >5	resistant
— C _T delay 4.1 – 4.9	difficult to interpret

- Probe E involvement or >1 probe involved (D + E)
- Extra-pulmonary specimens

Trouble shooting Xpert – False-negative 'susceptible' in mixed infection or heteroresistance

- Need 65-100% resistant strain DNA to be picked up
- Resistant strains partially inhibiting hybridization, would only need small concentration of sensitive strain amplicon to boost probe signal into normal range
- More common in hyperendemic regions

GenoType MTBDRplus version 2.0

Examples of GenoType MTBDR*plus* Sensitive & Resistance profiles

Trouble shooting GenoType MTBDRplus

Error	False positive 'resistant'	False negative 'susceptible'
Procedural	Hybridization Bands too dark	Hybridization Bands too light
	Cross contamination leads to overcalling heteroresistance/mixed infections	Some mutations at very end of amplified sequence (L533P) can be missed (earlier version)
Interpretation	Subjective reading error or	scanner error

Slide courtesy of Yonas Ghebrekristos

Culture-based DST

- Critical concentration of drug at which susceptible strains don't grow & resistant strains do
- Agar proportion method considered reference standard
- Future MIC testing would give more accurate information e.g. Sensititre

	1	2	3	4	5	6	7	8	9	10	11	12
А	OFL	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB
	32	8	16	16	32	16	64	40	256	4	40	32
в	OFL	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB
	16	4	8	8	16	8	32	20	128	2	20	16
с	OFL	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB
	8	2	4	4	8	4	16	10	64	1	10	8
D	OFL	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB
	4	1	2	2	4	2	8	5	32	0.5	5	4
E	OFL	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB
	2	0.5	1	1	2	1	4	2.5	16	0.25	2.5	2
F	OFL	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB
	1	0.25	0.5	0.5	1	0.5	2	1.2	8	0.12	1.2	1
G	OFL	MXF	RIF	AMI	STR	RFB	PAS	ETH	CYC	INH	KAN	EMB
	0.5	0.12	0.25	0.25	0.5	0.25	1	0.6	4	0.06	0.6	0.5
н	OFL 0.25	MXF 0.06	RIF 0.12	AMI 0.12	STR 0.25	RFB 0.12	PAS 0.5	ETH 0.3	CYC 2	INH 0.03	POS	POS

Lee J. AAC 2014;58(1):11

Principle of culture-based DST

5 1

Drug serum level

10

0.5 îî i

Critical concentration

Bottger. Clin Microbiol Infect 2011, 17: 1128-34

Drug concentration

(mg/L)

20

Trouble shooting phenotypic DST

False Resistance	False Sensitive
Too low critical concentration of drug or loss of antibiotic potency	Too high critical concentration drug
Inoculum too high	Inoculum too low
Contamination with either NTM or DR-TB	

National algorithm for diagnosis of pulmonary tuberculosis

Concordant Rifampicin Resistance

XPERT	LPA	Pheno -DST	Scenario	Explanation
R	R	R	>95% cases	>90% of cases <i>rpoB</i> mutations are high level RIF resistant (MICs>16ug/ml) & detected by MGIT DST at a critical concentration of 1ug/ml
				These are S531L, H526Y, H526D, D516V (all specifically detected by LPA)

Discordant Rifampicin Results (1) XPERT-R : LPA-R : Pheno-DST-S

Scenario	Explanation
Uncommon	• Disputed <i>rpoB</i> mutations in RRDR may be detected
Affects <5-10% of all	by Xpert & LPA
rpoB mutations in the	Effect on DST varies - low level resistance or
RRDR	susceptible, depending on SNP
	Needs confirmation by rpoB sequencing and MIC
	testing

Adapted from slide by N Beylis

Discordant Rifampicin Results (2) XPERT-R:LPA-S:Pheno-DST-S/R

Scenario	Explanation
Uncommon but	• False Xpert-R or false LPA-S must be decided by <i>rpoB</i>
increasingly	sequencing
recognized	 GSH/Greenpoint study of 100 patients over 12m*
	- XPERT-R was FALSE in 77% (no <i>rpoB</i> mutation)
	- LPA-S was FALSE in 23%
	Heteroresistance or mixed population
If XPERT-R is real	• Phenotypic DST result depends on whether the <i>rpoB</i>
	mutation confers high level resistance (Pheno DST-R)
	or low level resistance (Pheno-DST-S/R)

*Ghebrekristos Y et al. Union TB conference, Cape Town, 2015

Adapted from slide by N Beylis

Discordant Rifampicin Results (3) XPERT-S:LPA-R:Pheno-DST-S/R

Scenario	Explanation
Uncommon as if Xpert-S, algorithm only allows 2 nd specimen for microscopy, not LPA	 False Xpert-S / false LPA-R decided by <i>rpoB</i> sequencing OR Heteroresistance / mixed population

Discordant Rifampicin Results (4) XPERT-S: LPA-S: Pheno-DST-R

Scenario	Explanation
Uncommon as if Xpert-S, algorithm only allows 2 nd specimen for microscopy, not LPA	 <i>rpoB</i> mutations outside the RRDR Efflux pumps are not be detected by Xpert or LPA Limit of detection for genotypic tests is above the level of the Rifampicin-R mutant in the sample

Discordant Isoniazid Results LPA-S: Phenotypic-DST-R

- Isoniazid resistance
 - 60-70% due to *katG* mutation (high level)
 - 10-20% due to *inhA* mutation (low level)
- Resistance engendered by non-katG/inhA mutation mechanisms will not be picked up

What does heteroresistance or mixed populations look like on the LPA?

Due to the current diagnostic approach, which relies on Xpert as the starting point, heteroresistance usually becomes apparent either once the LPA is performed, if multiple samples get through the system, or the patient presents with 'failure to thrive' Clinical outcomes of patients with discordant diagnostic tests, heteroresistance or mixed infections

Ins and False. IneXpert MTB/RM Inexpert MTB/RM InternOBated InternOB

Managing mixed infections

Treat for both DS-TB and DR-TB

How should we treat patients with disputed *rpoB* mutations?

Rifampin Drug Resistance Tests for Tuberculosis: Challenging the Gold Standard

Armand Van Deun,^{a,b} Kya J. M. Aung,^c Valentin Bola,^d Rossin Lebeke,^d Mohamed Anwar Hossain,^c Willem Bram de Rijk,^a Leen Rigouts,^a Aysel Gumusboga,^a Gabriela Torrea,^a Bouke C. de Jong^a

- Sequenced sputum from 1st failure or relapse
- 10.6% samples from Kinshasa and 13.1% from Bangladesh had disputed mutations
 - 511Pro, 516Tyr, 526Asn, 526Leu, 533Pro, 572Phe

Rifampin Drug Resistance Tests for Tuberculosis: Challenging the Gold Standard

Armand Van Deun,^{a,b} Kya J. M. Aung,^c Valentin Bola,^d Rossin Lebeke,^d Mohamed Anwar Hossain,^c Willem Bram de Rijk,^a Leen Rigouts,^a Aysel Gumusboga,^a Gabriela Torrea,^a Bouke C. de Jong^a

- No difference in treatment failure (63%) with 1st line TB therapy between those with disputed vs undisputed *rpoB* mutations
- Other smaller studies by Williamson (NZ) and van Ingen (Netherlands) similar findings

Williamson. IJTLD 2012;16:216-20

Van Ingen. IJTLD 2011;15:990-2

Conclusions

- Discordance between genotypic and phenotypic tests are increasingly recognized and often rely on genome sequencing to elucidate the mechanism
- High rates of *Mycobacterium tuberculosis* transmission in high endemicity populations increase the prevalence of mixed infections

Conclusions (2)

- Patients with mixed populations of *Mycobacterium tuberculosis* should be treated for both DS-TB and DR-TB
- Patients with disputed *rpoB* mutations should be treated for MDR-TB ± high dose rifampicin as clinical outcome is worse with standard

treatment